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ABSTRACT

This paper proves the existence of Orlicz function spaces L* (0, 1) containing no
complemented subspaces isomorphic to !” for any p# 2. Some properties of
minimal Orlicz function spaces L*(0,1) are also given.

The existence of Orlicz sequence spaces [® containing no complemented
subspaces isomorphic to I” for any p =1 was proved by J. Lindenstrauss and
L. Tzafriri ({2], [3], [4]) by introducing the important class of minimal Orlicz
sequence spaces [°.

In this note we show a corresponding result for Orlicz function spaces
L*(0,1). We consider minimal Orlicz function spaces L*(0, 1) in order to prove
the existence of Orlicz spaces L?(0, 1) that contain no complemented subspaces
isomorphic to I* for any p# 2. More precisely the following result will be
proved:

THEOREM. Given 1<r=s=2or 2=r =5 <, there exists an Orlicz func-
tion space L*(0,1) with indices a,=r and B, =s which contains no com-
plemented subspaces isomorphic to I” for any p# 2.

First iet us recall some definitions. If ¢ is an Orlicz function (i.e., a continuous
convex non-decreasing function defined for x =0 such that ¢(0)=0 and
¢(1) =1)and u is the Lebesgue measure on [0, 1], the Orlicz space L*(0,1)=L"
consists of all measurable functions f on [0, 1] such that

m,(f)=J:)l d)(lél) dp <o for some r > 0.
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The space L® endowed with the Luxemburg norm || f|| = inf{r >0: m,(f)=1}isa
Banach space. We assume that ¢ satisfies the A.-condition, so the space L® is
separable ([6], [5]).

We shall consider the following sets related to ¢ in the space C(0,*) endowed
with the compact-open topology:

Ed,,s—'—{ﬂr—t)'rés], E, = (N E..,

¢(l’) ‘ s>0
Ex'S:{M: r;s} R Ex: m Ex‘x’
§ ¢(r) ? s>0 *
C,,=convE,,, C,=convE,,

for every s>0. As in the case of C(0,1) (see [2], [4]) it follows from the
A,-condition that the above sets are compact subsets of the space C(0,x=).

Let us define now a concept of “‘minimality” in Orlicz spaces which extends
the one given by J. Lindenstrauss and L. Tzafriri in the context of Orlicz
sequence spaces [*([2], [3])

DeriniTion.  An Orlicz function ¢ is minimal at < (resp. at 0) if for every
function ¢ € E7; C C(0, =) (resp. E,, C C(0,%)) we have that E, = Ej, (resp.
E¢~1 = E,J,J).

The existence of minimal functions at = (resp. at 0) is proved by Zorn’s
Lemma as in ([2], [4]).

PROPOSITION 1. Let ¢ be a minimal function at = (resp. at 0). Then in C(0,%)
E;,=E,=E,; =E,,.
ProOOF. Let us assume that ¢ is minimal at «, If y € E7 # ¢ it is clear that
E; CE;. Since E}, = E, we deduce that E, = E;. Hence there exists a

sequence (r,) 1 > such that ¢(r. -)/¢(r.) converges to ¢ uniformly over the
compact sets. Then the functions

d(rr-) _o(nr-) o)
o(rr) () @(nr)

converge pointwise to ¢ (r - )/ (r) for every r € (0, ). As (r.r) T =, we deduce
that

{%:r§1}=E¢,,CEZ’,,
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Now we can take in E;; a minimal function M at 0 and, by the same arguments
as above, exchanging the roles of 0 and =, we obtain that Ey, = Ey and
E+.C Eu.

Finally, we have

Eda.l D Ed) ) EM = EMJ D) E:,l = E:,l = EZ D) del- QED

As a consequence we get that a function ¢ is minimal at = if and only if it is
minimal at 0. From now on we shall say, in short, minimal functions. It is also
deduced easily that a minimal function has the same indices at = and at 0, i.e.,
a,=a, and B3 =B, (as defined in [4], [5]).

Let us remark now on the relation with the Lindenstrauss-Tzafriri (L-T)
minimal sequence spaces !*. Obviously every minimal function is a L-T minimal
function ([2]). Conversely, if ¢ is a L-T minimal function then the restriction to
[0,1] can be extended over the whole [0,%) defining a function M which is
minimal in C(0, ). Indeed, in E,;, C C(0, =) there exists a minimal function ¢.
Now, since ¢ is also a L-T minimal function, we can take a sequence
(g {r. - Y (r))in E,,; which converges to ¢y, in C(0, 1) and also to a function M
in C(0,%). Hence the function M is minimal and M,,,, = ¢.

PROPOSITION 2. Let ¢ be a minimal Orlicz function. Then the Orlicz function
space L° has a complemented subspace isomorphic to 1°.

ProOE. Let us consider the Orlicz sequence spaces [?(w) defined by
l“°(w)={x Ew: Y <b(lxs—"!) w, < ® for some s>0}
n=1

where (w,) is an arbitrary sequence of positive scalars ([1}). It is clear that the
space L* has a complemented copy of [*(w) for =,_, w, <, by considering a
conditional expectation.

Now let us see that [ is isomorphic to any space [?(w) for sequences (w, ); of
finite sum. Indeed, if (r,),-, denotes the scalar sequence verifying 1/¢(r,) = w,,
then the functions ¢(r. - )/¢(r.) belong to E7, for sufficiently large n. Since
E; = E, we can take a sequence (s,).-., converging to 0 such that

d(nt) GGt o 1 - <
o(r) o) |~z for0=r=l

and sufficiently large n. Now for w,, = 1/¢(s,), it follows from the above relation
that the spaces [“(w) and [*(w') are isomorphic. Finally, as w,— o the space
{*(w') is isomorphic to a space generated by a block basis with constant
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coefficients of the unit vector basis of /*. So from the minimality of the space [®
([4] Prop. 4.b.7) we conclude [*(w’) = I°. Q.E.D.

PROPOSITION 3. Let ¢ be a minimal Orlicz function. If L* has an isomorphic
copy of an Orlicz sequence space | with B, > 2, then there exists in C,, a function
F equivalent at 0 to some function of C,,.

PrROOF. Let Y be a subspace of L* isomorphic to [”. Since Y contains a copy
of [” for p = B, >2 ([4]) and L' has cotype 2, we have that Y is not isomorphic
to any subspace of L'. Now we will apply the generalized Kadec-Pelczynski
method ([5] Prop. 1.c.8): Let us consider the sets

o(fe)={:1f(N|ze|fl} and M(e)={fEL": ul(o(f €)= e}

for fE€ L? and £ > 0. For each n > 2, there exists an f, € Y with |[f.]|=1 and
f. & M(1/2"). If T is the isomorphism between Y and [*, then (T(e:)) is a basis
of Y and we can choose functions u, ==, a,T(e;) of Y verifying that

L ir=1e L
1 2,,:Hu,.][:1+2,1 and

outside of a set A, C[0,1] of measure u(A,)<1/2".
We claim that u,& M(1/2"7). Indeed, it is clear that

(r(u,., 5}3) C {t: lu, (1) >2%} =B,.

Now if 1 € B,\ A, then |f,(£)]=1/2"'>1/2", so t € (f.,1/2"). Hence

()= £, (0] <5

1 1 1 1
7 (J(u,,,zTi>>§;L(B,,)<§;+2—"<F

and u, & M(1/2"7%).

Furthermore, in the above construction we can replace in each step corres-
ponding to n >3 the subspace Y by the subspace Y, = [‘T(ei)T:N(",,)], which is
isomorphic to Y since the basis (T(e;))i is subsymmetric. Hence we obtain a
block basis of (T(e;))7 that we still denote by (u, )i, and by a routine argument
([4], p. 142) there exists a subsequence (u,, )i -1 of (1, ) generating in Y an Orlicz
sequence space [” for some function F € C,,.

Now, working with a subsequence (u., )i~ of (u,)i-1 as in the proof of (5]
Prop. 1.c.8), we can find functions (g);-, of L* with mutually disjoint supports
verifying

1 .
\Ig,—u"kl|\<iﬁ for j=1,2,....
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Hence, by a perturbation result ([4] Prop. 1.a.9i), the basic sequences (g;); and
(4,);-1 are equivalent, so the subspace [(g;)}-1 is isomorphic to [(u ., )}j-1 = | F
Finally, by the density of the step functions in L?, for each j there exist

mutually disjoint sets B;, C supp(g;) and real numbers (a;,) for r = 1,..., k; such

that h, = 2%, a;,xs, verifies

g —mll<1/2.

Hence the space [(h,)];-: is isomorphic to [. On the other hand, the subspace
[(x 5.)],. is isomorphic to I* by the proof of Proposition 2. Therefore [ contains
a subspace isomorphic to !© and from ([4] Thm. 4.a.8) we conclude that F is

equivalent at 0 to a function of C,,. Q.E.D.

PROPOSITION 4. Let ¢ be a minimal Orlicz function and p >?2. Then L* has a
copy (resp. a complemented copy) of I” if and only if I° has a copy (resp. a
complemented copy) of [*.

ProoF. One of the implications is a simple consequence of Proposition 2.
Now if L has a copy of {”, we apply Proposition 3 for (¢) = " and get that [*
has a copy of [*.

Let us assume now that L* has a complemented subspace Y isomorphic to [°.
Repeating the proof of Proposition 3 we obtain, with the same notation, the
block basis ()i~ of Y in L. Since every block basis of the canonical basis of
I1? is complemented ([4] Prop. 2.a.1) we get that the space Ui =17 is
complemented in Y and hence in L?. Now, by taking an adequate perturbation
([4] Prop. 1.a.9ii), it is possible to obtain basic sequences (g )/~ and (h; )i, which
are complemented in L?. thus [* has a complemented subspace isomorphic to
()] = 1. Q.E.D.

It is well known that in every reflexive Orlicz function space L° the
Rademacher functions 'span is a complemented subspace isomorphic to I* (e.g.

(5D

PROOF OF THE THEOREM. Fix 2 = r = s < «; let us consider the minimal Orlicz
function ¢ defined by Lindenstrauss and Tzafriri in ([3], [4] Example 4.¢.7) with
indices 2= r = a, = s = B,. Thus the minimal Orlicz sequence spaces !* do not
have any complemented subspace isomorphic to [ for p=1. Now, as we
remarked above, the function ¢ on [0, 1] can be extended to a minimal function
in C(0,®) which we also denote by ¢. Hence the indices of ¢ are ay=r and
B3 =s. Since a = 2 it follows from ([3], p. 386) that L contains no copies of I
for p&[aj, B2l U{2}). So, using the above Proposition, we conclude that the
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Orlicz space L* does not have complemented subspaces isomorphic to [” for

p#2.
The remaining case is now easily proved by using duality arguments. Q.E.D.

REMARK. We do not know whether the above result is still true when
r<2<s.
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