ORLICZ FUNCTION SPACES WITHOUT COMPLEMENTED COPIES OF $l^{p^{\dagger}}$

ΒY

FRANCISCO L. HERNÁNDEZ AND VICENTE PEIRATS Dpto Teoria de Funciones, Facultad de Matematicas, Universidad Complutense, 28040 Madrid, Spain

ABSTRACT

This paper proves the existence of Orlicz function spaces $L^{*}(0, 1)$ containing no complemented subspaces isomorphic to l^{p} for any $p \neq 2$. Some properties of minimal Orlicz function spaces $L^{*}(0, 1)$ are also given.

The existence of Orlicz sequence spaces l^{ϕ} containing no complemented subspaces isomorphic to l^{p} for any $p \ge 1$ was proved by J. Lindenstrauss and L. Tzafriri ([2], [3], [4]) by introducing the important class of minimal Orlicz sequence spaces l^{ϕ} .

In this note we show a corresponding result for Orlicz function spaces $L^{\phi}(0, 1)$. We consider minimal Orlicz function spaces $L^{\phi}(0, 1)$ in order to prove the existence of Orlicz spaces $L^{\phi}(0, 1)$ that contain no complemented subspaces isomorphic to l^{p} for any $p \neq 2$. More precisely the following result will be proved:

THEOREM. Given $1 < r \le s \le 2$ or $2 \le r \le s < \infty$, there exists an Orlicz function space $L^{\phi}(0,1)$ with indices $\alpha_{\phi}^{*} = r$ and $\beta_{\phi}^{*} = s$ which contains no complemented subspaces isomorphic to l^{p} for any $p \ne 2$.

First let us recall some definitions. If ϕ is an Orlicz function (i.e., a continuous convex non-decreasing function defined for $x \ge 0$ such that $\phi(0) = 0$ and $\phi(1) = 1$) and μ is the Lebesgue measure on [0, 1], the Orlicz space $L^{\phi}(0, 1) \equiv L^{\phi}$ consists of all measurable functions f on [0, 1] such that

$$m_r(f) = \int_0^1 \phi\left(\frac{|f|}{r}\right) d\mu < \infty$$
 for some $r > 0$.

⁺ Supported in part by CAICYT grant 0338-84.

Received January 20, 1986 and in revised form July 6, 1986

Isr. J. Math.

The space L^{ϕ} endowed with the Luxemburg norm $||f|| = \inf\{r > 0: m_r(f) \le 1\}$ is a Banach space. We assume that ϕ satisfies the Δ_2 -condition, so the space L^{ϕ} is separable ([6], [5]).

We shall consider the following sets related to ϕ in the space $C(0, \infty)$ endowed with the compact-open topology:

$$E_{\phi,s} = \left\{ \frac{\overline{\phi(rt)}}{\phi(r)} : r \leq s \right\}, \qquad E_{\phi} = \bigcap_{s>0} E_{\phi,s},$$
$$E_{\phi,s}^{x} = \left\{ \frac{\overline{\phi(rt)}}{\phi(r)} : r \geq s \right\}, \qquad E_{\phi}^{x} = \bigcap_{s>0} E_{\phi,s}^{x},$$
$$C_{\phi,s} = \overline{\operatorname{conv}} E_{\phi,s}, \qquad C_{\phi} = \overline{\operatorname{conv}} E_{\phi},$$

for every s > 0. As in the case of C(0, 1) (see [2], [4]) it follows from the Δ_2 -condition that the above sets are compact subsets of the space $C(0, \infty)$.

Let us define now a concept of "minimality" in Orlicz spaces which extends the one given by J. Lindenstrauss and L. Tzafriri in the context of Orlicz sequence spaces $l^{\phi}([2], [3])$

DEFINITION. An Orlicz function ϕ is minimal at ∞ (resp. at 0) if for every function $\psi \in E_{\phi,1}^{\infty} \subset C(0,\infty)$ (resp. $E_{\phi,1} \subset C(0,\infty)$) we have that $E_{\phi,1}^{\infty} = E_{\psi,1}^{\infty}$ (resp. $E_{\phi,1} = E_{\psi,1}$).

The existence of minimal functions at ∞ (resp. at 0) is proved by Zorn's Lemma as in ([2], [4]).

PROPOSITION 1. Let ϕ be a minimal function at ∞ (resp. at 0). Then in $C(0, \infty)$

$$E_{\phi,1}^{*} = E_{\phi}^{*} = E_{\phi} = E_{\phi,1}.$$

PROOF. Let us assume that ϕ is minimal at ∞ . If $\psi \in E_{\phi}^{\infty} \neq \phi$ it is clear that $E_{\psi,1}^{\infty} \subset E_{\phi}^{\infty}$. Since $E_{\phi,1}^{\infty} = E_{\psi,1}^{\infty}$ we deduce that $E_{\phi,1}^{\infty} = E_{\phi}^{\infty}$. Hence there exists a sequence $(r_n) \uparrow \infty$ such that $\phi(r_n \cdot)/\phi(r_n)$ converges to ϕ uniformly over the compact sets. Then the functions

$$\frac{\phi(r_n r \cdot)}{\phi(r_n r)} = \frac{\phi(r_n r \cdot)}{\phi(r_n)} \cdot \frac{\phi(r_n)}{\phi(r_n r)}$$

converge pointwise to $\phi(r \cdot)/\phi(r)$ for every $r \in (0, \infty)$. As $(r_n r) \uparrow \infty$, we deduce that

$$\left\{\frac{\overline{\phi(r\,\cdot\,)}}{\phi(r)}:r\leq 1\right\}=E_{\phi,1}\subset E_{\phi}^{\infty}.$$

ORLICZ SPACES

Now we can take in $E_{\phi,1}$ a minimal function M at 0 and, by the same arguments as above, exchanging the roles of 0 and ∞ , we obtain that $E_{M,1} = E_M$ and $E_{M,1}^{\infty} \subset E_M$.

Finally, we have

$$E_{\phi,1} \supset E_{\phi} \supset E_{M} = E_{M,1} \supset E_{M,1}^{*} = E_{\phi,1}^{*} = E_{\phi}^{*} \supset E_{\phi,1}.$$
 Q.E.D.

As a consequence we get that a function ϕ is minimal at ∞ if and only if it is minimal at 0. From now on we shall say, in short, *minimal functions*. It is also deduced easily that a minimal function has the same indices at ∞ and at 0, i.e., $\alpha_{\phi}^{x} = \alpha_{\phi}$ and $\beta_{\phi}^{x} = \beta_{\phi}$ (as defined in [4], [5]).

Let us remark now on the relation with the Lindenstrauss-Tzafriri (L-T) minimal sequence spaces l^{ϕ} . Obviously every minimal function is a L-T minimal function ([2]). Conversely, if ϕ is a L-T minimal function then the restriction to [0, 1] can be extended over the whole $[0, \infty)$ defining a function M which is minimal in $C(0, \infty)$. Indeed, in $E_{\phi,1} \subset C(0, \infty)$ there exists a minimal function ψ . Now, since ψ is also a L-T minimal function, we can take a sequence $(\psi(r_k \cdot)/\psi(r_k))$ in $E_{\phi,1}$ which converges to $\phi_{[0,1]}$ in C(0, 1) and also to a function M in $C(0, \infty)$. Hence the function M is minimal and $M_{[0,1]} = \phi$.

PROPOSITION 2. Let ϕ be a minimal Orlicz function. Then the Orlicz function space L^{ϕ} has a complemented subspace isomorphic to l^{ϕ} .

PROOF. Let us consider the Orlicz sequence spaces $l^{\phi}(w)$ defined by

$$l^{\phi}(w) = \left\{ x \in \omega \colon \sum_{n=1}^{\infty} \phi\left(\frac{|x_n|}{s}\right) w_n < \infty \text{ for some } s > 0 \right\}$$

where (w_n) is an arbitrary sequence of positive scalars ([1]). It is clear that the space L^{ϕ} has a complemented copy of $l^{\phi}(w)$ for $\sum_{n=1}^{\infty} w_n < \infty$, by considering a conditional expectation.

Now let us see that l^{ϕ} is isomorphic to any space $l^{\phi}(w)$ for sequences $(w_n)_1^{\infty}$ of finite sum. Indeed, if $(r_n)_{n=1}^{\infty}$ denotes the scalar sequence verifying $1/\phi(r_n) = w_n$, then the functions $\phi(r_n \cdot)/\phi(r_n)$ belong to $E_{\phi,1}^{\infty}$ for sufficiently large *n*. Since $E_{\phi,1}^{\infty} = E_{\phi}$ we can take a sequence $(s_n)_{n=n_0}^{\infty}$ converging to 0 such that

$$\left|\frac{\phi(r_n t)}{\phi(r_n)} - \frac{\phi(s_n t)}{\phi(s_n)}\right| \le \frac{1}{2^n} \quad \text{for } 0 \le t \le 1$$

and sufficiently large *n*. Now for $w'_n = 1/\phi(s_n)$, it follows from the above relation that the spaces $l^{\phi}(w)$ and $l^{\phi}(w')$ are isomorphic. Finally, as $w'_n \to \infty$ the space $l^{\phi}(w')$ is isomorphic to a space generated by a block basis with constant

coefficients of the unit vector basis of l^{ϕ} . So from the minimality of the space l^{ϕ} ([4] Prop. 4.b.7) we conclude $l^{\phi}(w') \approx l^{\phi}$. Q.E.D.

PROPOSITION 3. Let ϕ be a minimal Orlicz function. If L^{ϕ} has an isomorphic copy of an Orlicz sequence space l^{ψ} with $\beta_{\psi} > 2$, then there exists in $C_{\psi,1}$ a function F equivalent at 0 to some function of $C_{\phi,1}$.

PROOF. Let Y be a subspace of L^{ϕ} isomorphic to l^{ψ} . Since Y contains a copy of l^{p} for $p = \beta_{\psi} > 2$ ([4]) and L^{1} has cotype 2, we have that Y is not isomorphic to any subspace of L^{1} . Now we will apply the generalized Kadec-Pelczynski method ([5] Prop. 1.c.8): Let us consider the sets

$$\sigma(f,\varepsilon) = \{t \colon |f(t)| \ge \varepsilon \, \|f\|\} \text{ and } M(\varepsilon) = \{f \in L^{\phi} \colon \mu(\sigma(f,\varepsilon)) \ge \varepsilon\}$$

for $f \in L^{\phi}$ and $\varepsilon > 0$. For each n > 2, there exists an $f_n \in Y$ with $||f_n|| = 1$ and $f_n \notin M(1/2^n)$. If T is the isomorphism between Y and l^{ϕ} , then $(T(e_i))_1^{\alpha}$ is a basis of Y and we can choose functions $u_n = \sum_{i=1}^{N_n} a_i T(e_i)$ of Y verifying that

$$1 - \frac{1}{2^n} \le ||u_n|| \le 1 + \frac{1}{2^n}$$
 and $|u_n(t) - f_n(t)| < \frac{1}{2^n}$

outside of a set $A_n \in [0, 1]$ of measure $\mu(A_n) < 1/2^n$.

We claim that $u_n \notin M(1/2^{n-2})$. Indeed, it is clear that

$$\sigma\left(u_n,\frac{1}{2^{n-2}}\right)\subset\left\{t:|u_n(t)|>\frac{3}{2^n}\right\}=B_n.$$

Now if $t \in B_n \setminus A_n$ then $|f_n(t)| \ge 1/2^{n-1} > 1/2^n$, so $t \in \sigma(f_n, 1/2^n)$. Hence

$$\mu\left(\sigma\left(u_{n},\frac{1}{2^{n-2}}\right)\right) \leq \mu(B_{n}) < \frac{1}{2^{n}} + \frac{1}{2^{n}} < \frac{1}{2^{n-2}}$$

and $u_n \notin M(1/2^{n-2})$.

Furthermore, in the above construction we can replace in each step corresponding to n > 3 the subspace Y by the subspace $Y_n = [T(e_i)_{i=N(n-1)}^{\infty}]$, which is isomorphic to Y since the basis $(T(e_i))_1^{\infty}$ is subsymmetric. Hence we obtain a block basis of $(T(e_i))_1^{\infty}$ that we still denote by $(u_n)_1^{\infty}$, and by a routine argument ([4], p. 142) there exists a subsequence $(u_{n_k})_{k=1}^{\infty}$ of $(u_n)_1^{\infty}$ generating in Y an Orlicz sequence space l^F for some function $F \in C_{q_n}$.

Now, working with a subsequence $(u_{n_k})_{j=1}^{\infty}$ of $(u_{n_k})_{k=1}^{k}$ as in the proof of ([5] Prop. 1.c.8), we can find functions $(g_j)_{j=1}^{\infty}$ of L^{ϕ} with mutually disjoint supports verifying

$$||g_j - u_{n_k_j}|| < \frac{1}{2^{j-1}}$$
 for $j = 1, 2, ...$

ORLICZ SPACES

Hence, by a perturbation result ([4] Prop. 1.a.9i), the basic sequences $(g_j)_{l}^{\infty}$ and $(u_{n_k})_{j=1}^{\infty}$ are equivalent, so the subspace $[\overline{(g_j)}]_{j=1}^{\infty}$ is isomorphic to $[\overline{(u_{n_k})}]_{j=1}^{\infty} \approx l^F$.

Finally, by the density of the step functions in L^{ϕ} , for each *j* there exist mutually disjoint sets $B_{j,r} \subset \text{supp}(g_j)$ and real numbers $(a_{j,r})$ for $r = 1, \ldots, k_j$ such that $h_j = \sum_{r=1}^{k_j} a_{j,r} \chi_{B_{j,r}}$ verifies

$$||g_j - h_j|| < 1/2^j$$
.

Hence the space $[\overline{(h_i)}]_{i=1}^{\infty}$ is isomorphic to l^F . On the other hand, the subspace $[\overline{(\chi_{B_{i,r}})}]_{i,r}$ is isomorphic to l^{ϕ} by the proof of Proposition 2. Therefore l^{ϕ} contains a subspace isomorphic to l^F and from ([4] Thm. 4.a.8) we conclude that F is equivalent at 0 to a function of $C_{\phi,1}$. Q.E.D.

PROPOSITION 4. Let ϕ be a minimal Orlicz function and p > 2. Then L^{ϕ} has a copy (resp. a complemented copy) of l^{p} if and only if l^{ϕ} has a copy (resp. a complemented copy) of l^{p} .

PROOF. One of the implications is a simple consequence of Proposition 2. Now if L^{ϕ} has a copy of l^{p} , we apply Proposition 3 for $\psi(t) = t^{p}$ and get that l^{ϕ} has a copy of l^{p} .

Let us assume now that L^{ϕ} has a complemented subspace Y isomorphic to l^{p} . Repeating the proof of Proposition 3 we obtain, with the same notation, the block basis $(u_{nk})_{k=1}^{*}$ of Y in L^{ϕ} . Since every block basis of the canonical basis of l^{p} is complemented ([4] Prop. 2.a.1) we get that the space $[\overline{(u_{nk})}]_{k=1}^{*} \approx l^{p}$ is complemented in Y and hence in L^{ϕ} . Now, by taking an adequate perturbation ([4] Prop. 1.a.9ii), it is possible to obtain basic sequences $(g_{i})_{i=1}^{*}$ and $(h_{i})_{i=1}^{\infty}$ which are complemented in L^{ϕ} . thus l^{ϕ} has a complemented subspace isomorphic to $[\overline{(h_{i})}]_{i=1}^{*} \approx l^{p}$. Q.E.D.

It is well known that in every reflexive Orlicz function space L^{ϕ} the Rademacher functions span is a complemented subspace isomorphic to l^2 (e.g. [5]).

PROOF OF THE THEOREM. Fix $2 \le r \le s < \infty$; let us consider the minimal Orlicz function ϕ defined by Lindenstrauss and Tzafriri in ([3], [4] Example 4.c.7) with indices $2 \le r = \alpha_{\phi} \le s = \beta_{\phi}$. Thus the minimal Orlicz sequence spaces l^{ϕ} do not have any complemented subspace isomorphic to l^{p} for $p \ge 1$. Now, as we remarked above, the function ϕ on [0, 1] can be extended to a minimal function in $C(0, \infty)$ which we also denote by ϕ . Hence the indices of ϕ are $\alpha_{\phi}^{\infty} = r$ and $\beta_{\phi}^{\infty} = s$. Since $\alpha_{\phi}^{\infty} \ge 2$ it follows from ([3], p. 386) that L^{ϕ} contains no copies of l^{p} for $p \not\in [\alpha_{\phi}^{\infty}, \beta_{\phi}^{\infty}] \cup \{2\}$. So, using the above Proposition, we conclude that the Orlicz space L^{ϕ} does not have complemented subspaces isomorphic to l^{p} for $p \neq 2$.

The remaining case is now easily proved by using duality arguments. Q.E.D.

REMARK. We do not know whether the above result is still true when r < 2 < s.

ACKNOWLEDGEMENT

We wish to thank Prof. L. Tzafriri for helpful suggestions on this subject.

REFERENCES

1. F. L. Hernández, On the galb of weighted Orlicz sequence spaces II, Arch. Math. 45 (1985), 158-168.

2. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces II, Israel J. Math. 11 (1972), 355-379.

3. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces III, Israel J. Math. 14 (1973), 368-389.

4. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I. Sequence Spaces, Springer-Verlag, 1977.

5. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, II. Function Spaces, Springer-Verlag, 1979.

6. W. Luxemburg, Banach function spaces, Thesis, Assen, 1955.